

Winning R&D projects

Johan Beukema

Partner

February 2018

Buck Consultants International

P.O. Box 1456

6501 BL Nijmegen

The Netherlands

P: +31 24 379 0222

M: +31 651100938

F: +31 24 379 0120

E: johan.beukema@bciglobal.com

Agenda

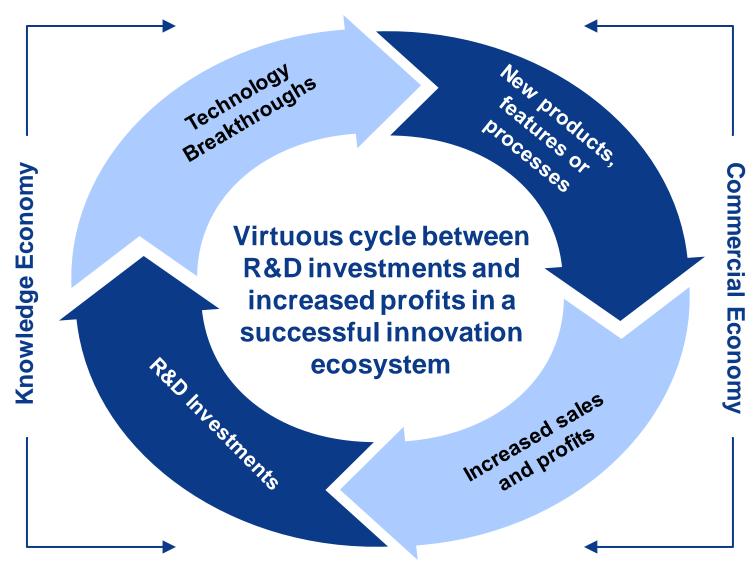
- 1 Changes in the R&D Landscape
- 2 Global Developments
- 3 Ecosystems, Clusters and Science & Innovation Parks
- 4 Marketing Your Technology Base

1 Changes in the R&D Landscape

Wish list EDOs

"We want to grow our high tech cluster with 10% p.a."

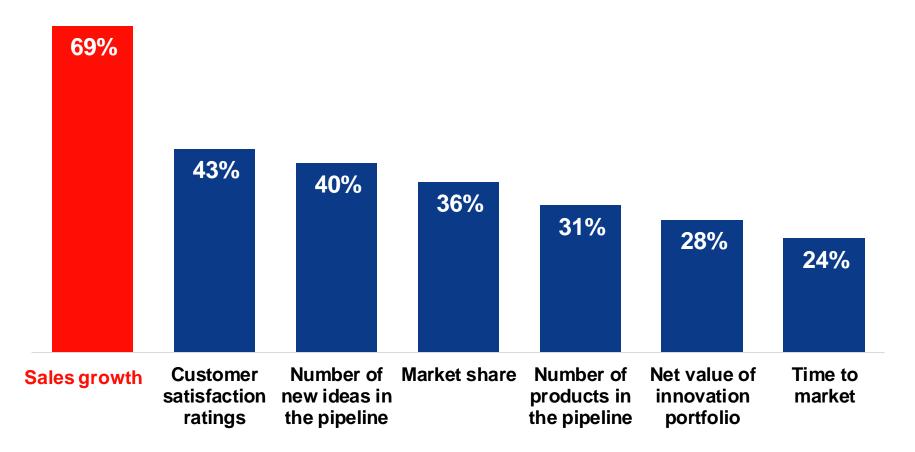
"By 2022 our region is one of the 5 main life sciences regions in the world "


"Our technology park offers everything food companies are looking for"

"Our target is 15 new R&D centers in 3 years."

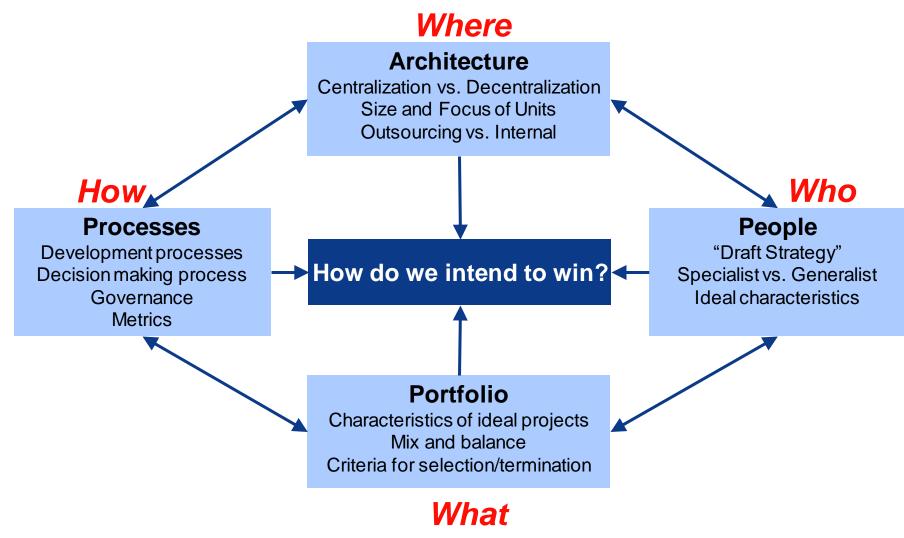
But what are companies looking for?
Where will new R&D centers be located?

Why R&D matters?



Source: National Science Foundation

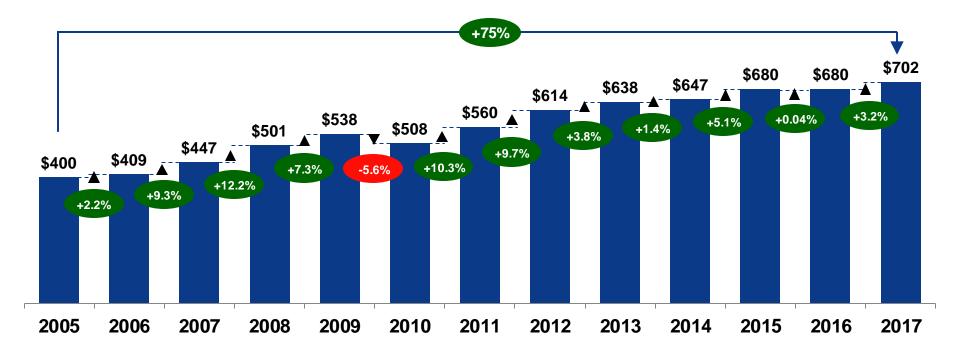
Innovation's impact: sales growth is the top metric


What are the most important metrics for measuring innovation at your organization? (n=1,222)

Source: PwC, 2017

Key elements of R&D Strategy

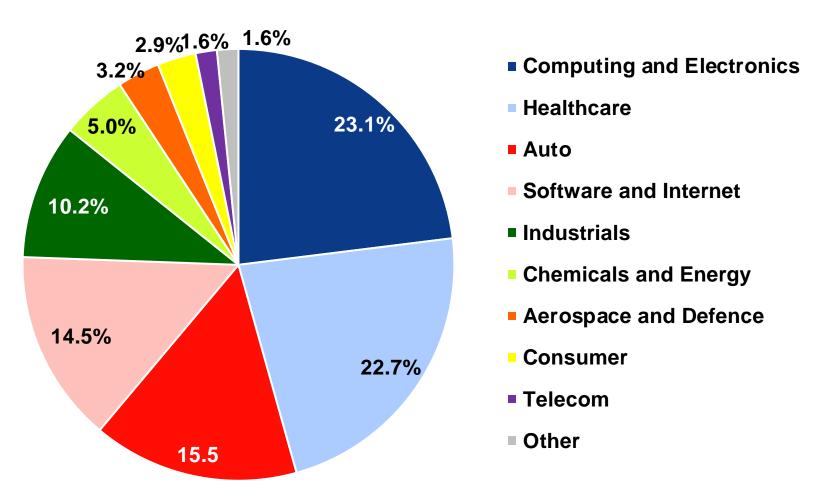
Source: Harvard Business School, 2012


Six Key Trends

A R&D expenditures are still growing

Global innovation 1000 R&D spending

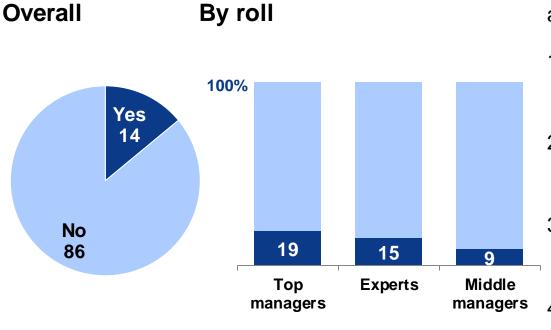
2005 – 2017, USD billions



Source: PwC, 2017

Computing & Electronics, Healthcare and Auto contributed 61% of R&D spending in 2017

2017 R&D spending by industry

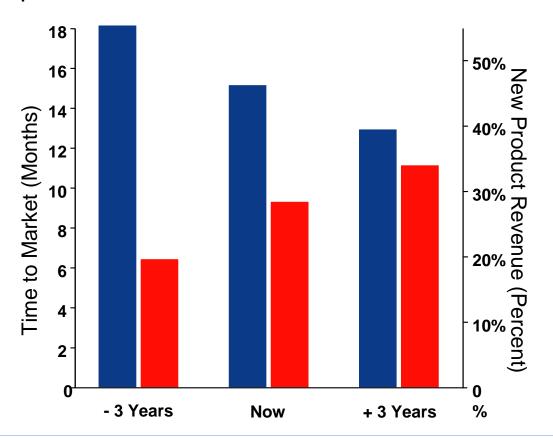

Total = \$701.6 USD billions

Source: PwC, 2017

Less than a fifth of the companies are ahead of the curve in six emerging R&D trends

Is your company ahead of the curve in meeting the challenges of six emerging R&D trends?¹ (% of respondents²)

Pool of 200 respondents from top R&D organizations across the regions and six industries The percentages of companies that are ready for the following six trends:

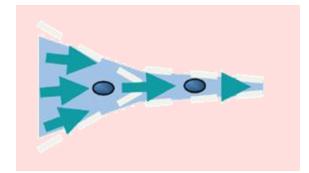

- 1 The ability to leverage the Internet of Things, big data and advanced analytics, 11%
- 2 Digitization of the productdevelopment process and featurebased development, 13%
- 3 Adapting product development to advanced materials and new manufacturing technologies, 17%
- 4 Excellence in software development, 13%
- 5 Globalizing R&D footprints, 20%
- 6 Transparency and accountability in R&D performance, 13%

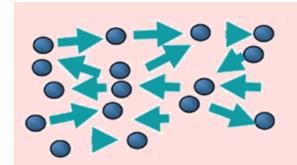
Source: MIG. 2016

B Next level of open innovation are innovation networks ecosystems

Innovation challenges: reducing time to market while increasing new product revenue

- Time to Market (Months)
- Revenues from new product (Percent)


Answers


- Open innovation
- Globalization

Source: Deloitte/adjusted BCI, 2014

Innovation Networks

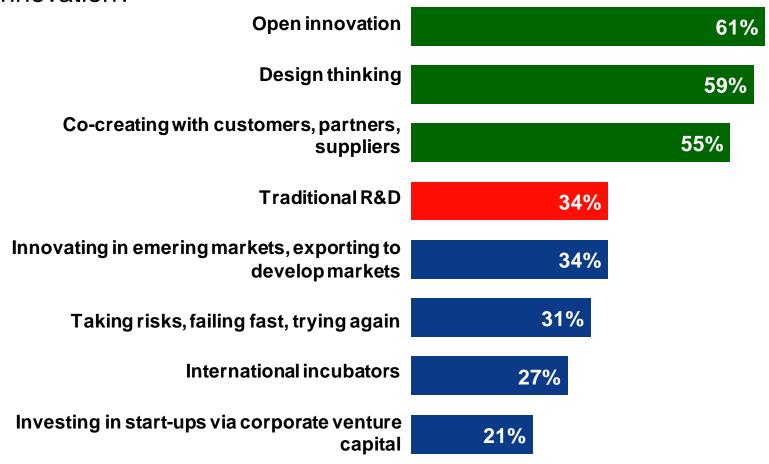
Centralized inward looking innovation

Externally focused, collaborative innovation

Ecosystem centric, cross-organizational innovation

Closed Innovation

Open Innovation


Innovation Networks Ecosystems

Source :EU Open Innovation Strategy and Policy Group, 2013

More collaborative operating models outpace traditional R&D

What operating model does your organization currently use to drive innovation?

Source: PwC, 2017

C In R&D internationalization wins from economic nationalism

Input-oriented

- Information and communication networks
- Insufficient home personnel
- Local pocket-of-innovation
- Local infrastructure
- Qualified personnel abroad
- Local scientific community
- Tapping informal networks

Output-oriented

- National and legal conditions
- Country-specific cost advantages
- Local economic and natural advantages
- Improving local image
- Adaptation to local production processes
- Customer-specific development
- Closeness to lead users
- Local values
- Market and customer proximity

Efficiency-oriented

- Improving flexibility through new organization
- Local critical mass/mass digression in home country
- Reduction of development failure risks
- Making use of many time zones
- Closeness to production, marketing, distribution
- Reduction of development cycle time
- Overcoming logistic barriers
- Lower R&D personnel costs

Key Drivers R&D Internationalization

External

- Acquisition of parent company, merger
- Historic reasons
- Peer pressure
- Tax optimization

Political / socio-cultural

- Improvement of international patenting laws
- Overcoming protectionist barriers
- Local social and peaceful labour relations
- Local content
- Legal restrictions in home country
- Low home acceptance
- Subsidies

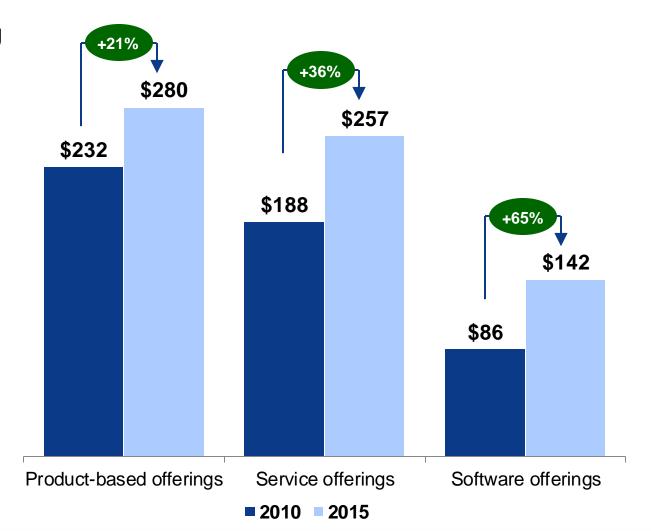
D Steering R&D is changing: a more clear split between Research locations and Development locations

- The Research locations are chosen for their scientific excellence and high skilled talent base. The Development locations are chosen by the business lines/divisions and focus mainly on emerging markets
- Europe becomes more the research base for multinational companies;
 other parts in the world are home to new development centers
 - In various industries Europe has a strong research base
 - The US is a strong player in basic research and applied research & development
 - China and India are particularly appreciated for development and applied research

E The future R&D landscape: a limited number of global cross industry hot spots and specialized satellites

- Around the world a limited number of locations form the (cross-industry) R&D hot spots
- In Europe the strongest R&D hot spots are
 - London Cambridge Oxford
 - the larger Paris region
 - separate German cities such as Berlin and Munich
- Specialized satellites can be found in (examples)
 - Switzerland: Basel Zurich for life sciences
 - Ireland: Dublin for the high tech industry
 - France: individual cities/regions like Grenoble, Toulouse, Sophia Antipolis for the high tech industry

Scandinavia: Stockholm, Helsinki for the ICT sector



15

F Shift from product-based R&D to software & services

Total R&D spending by type of offering US\$ Billions

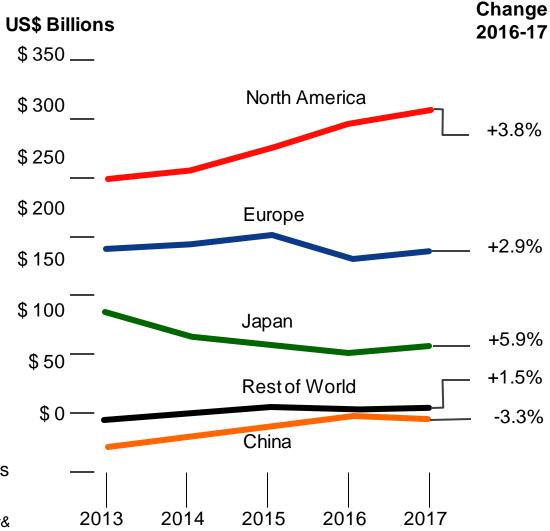
Source: Strategy&, 2016

2 Global Developments

Global R&D spending

(Total billion US\$, 2017, estimates)

1	United States	512
2	China	401
3	Japan	172
4	Germany	113
5	South Korea	81
6	India	73
7	France	60
8	Russia	55


9	United Kingdom	48
10	Brazil	37
11	Australia	35
12	Canada	30
13	Italy	28
14	Taiwan	27
15	Spain	21
16	Netherlands	18

Source: OECD (42 countries)

Does Europe matter?

Buck Consultants International

R&D Spending by Region

Note: Use of local currency would result in different year-over-year changes

Source: Bloomberg data, Capital IQ data, Strategy&

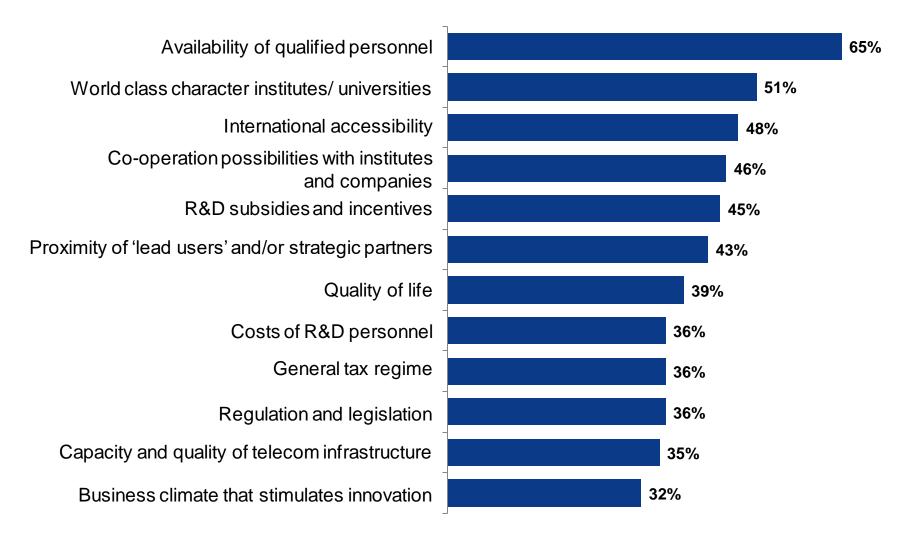
Top 10 Global Innovation Index (± 128 countries)

1	Switzerland
2	Sweden
3	United Kingdom
4	USA
5	Finland
6	Singapore
7	Ireland
8	Denmark
9	Netherlands
10	Germany

Source: GII, 2016

Global start-up cities

1	London	
2	Paris	
3	Berlin	
4	Los Angeles	
5	Boston	
6	Singapore	
7	Bangalore	
8	Stockholm	
9	Moscow	
10	Tel Aviv	


1	Singapore	
2	Helsinki	
3	San Francisco	
4	Berlin	
5	Stockholm	
6	Tel Aviv	
7	Zurich	
8	Seoul	
9	Hamburg	
10	Toronto	

1	Silicon Valley
2	New York City
3	London
4	Beijng
5	Boston
6	Tel Aviv
7	Berlin
8	Shanghai
9	Los Angeles
10	Seattle

Source: Inc Source: Nestpick Source: Startup Genome

Importance of location requirements for new R&D centers

Source: BCI

3 Ecosystems, Clusters and Science & Innovation Parks

Ecosystem

 conditions to stimulate economic activities, not sector or technology related
 Example: start-up ecosystem in a city

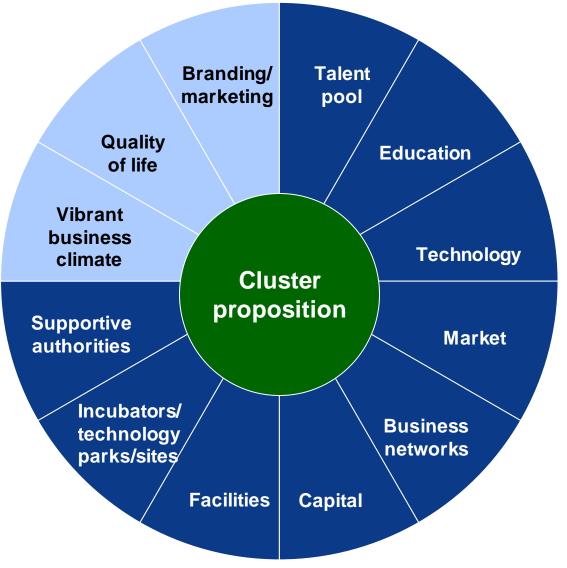
Cluster

defined geographical area where triple-helix partners (enterprises - knowledge institutes/ universities - governments/EDOs) are interconnected and work together in specific sectors/technology domains in order to create more innovation, export, start-ups, educational opportunities

Science park/ innovation campus specific site where researchers of companies and universities/ knowledge institutes work together intensively in R&D and innovation

Added value of clusters

Advantages to companies


- Access to specific knowledge by network and dedicated R&D institutes
- Dedicated infrastructure
- Availability of specialised personnel
- Availability of specialised suppliers
- Extra profiling ('powered by')
- Healthy competition, boosting motivation and innovation

Advantages to regions

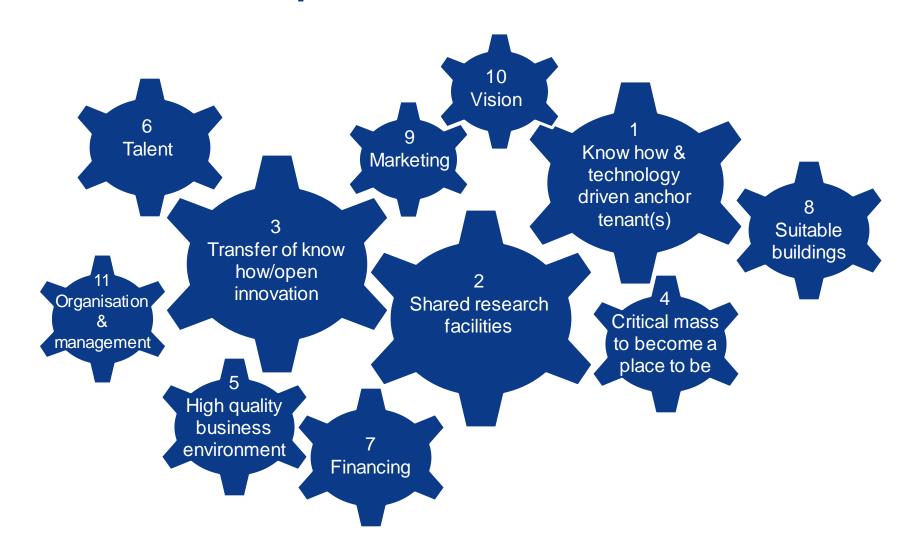
- Higher productivity of companies
- More start-ups / spin-offs with more chance of survival
- More innovation
- Opportunities for dedicated and effective policy
- Enhanced attractiveness to companies from elsewhere ('the best businesses want to move in')

The BCI Cluster Proposition Clock

Key building blocks of a successful cluster

Talent Pool	Availability, skills and experience of the workforce in the specific priority target sector		
Education	Availability & reputation of educational institutes at various levels in the specific priority target sector		
Technology & Know How	Assessment of the specific technologies available at academic and research institutes as well as within R&D centers of companies. What are the key strengths?		
Market	What is the regional/national market for this specific sector, including launching customers		
Business networks	Presence, size and activities of (big and small) firms in this particular target sector; life-cycle development stage and level of organization of relevant existing clusters in the sector		
Capital	Available venture capital & loans available for business activities in the specific priority target sector		
Facilities	(Shared) Advanced research and business facilities open for third party use in this target sector		
Office, R&D & industrial sites	Dedicated research, manufacturing and/or office space available in innovation-oriented surroundings, preferably including presence of manifest knowledge intensive organization (public or private)		
Supportive authorities	Coherent supportive programs on local and regional level to enhance the development of start-up companies and SME's and to promote the cluster		

Secondary supporting building blocks for successful clusters


Vibrant business climate	Overall economic growth and level of innovation in the area
Quality of Life	Quality of life for knowledge workers, including ex-patriates
Branding / marketing	Effort to brand and market the region (and its priority target sectors) on a national and international level

Strengthen regional niche clusters by enhancing innovation and strengthening the talent base

- According to our CTO contacts enhancing innovation is important
 - open innovation programmes and events (at state and regional level) organized by triple helix platforms
 - foster high flying university stars
 - capital: from seed capital to fiscal and financial incentives/attractive taxes
 - a good balance in attention for big, mid-size and small start-up firms
- Our clients recommend the following measures for strengthening the talent base in your state/ region
 - keep current talent (at work or in education) to your region
 - take an international perspective in assessing your region's attractiveness for global talent (visa's, languages, quality of life)

Success factors of a Science Park or Innovation Campus

Source: Buck Consultants International

Conclusions

- Regional technology clusters are attractive for companies
- A technology cluster can be successful without a science & technology park
- Success of a science/ technology park depends on the proposition, not on property
- A science & technology park cannot be successful without a vibrant cluster

4 Marketing Your Technology Base

The five step approach of Buck Consultants International

Step 1 Select technology niche(s)

Step 2 Benchmark your ecosystem/ region

Step 3 Develop a technology value proposition*

Step 4 Identify target companies

Step 5 Reach out to targeted companies

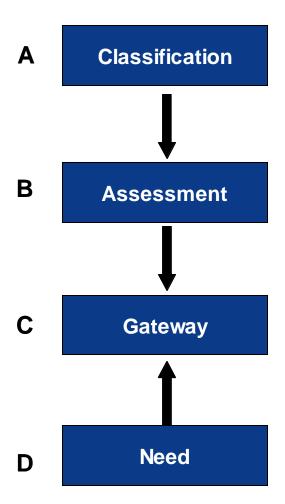
1	2	3	4	5
Select	Benchmark	Developa	Identify	Reach out
technology	your ecosystem/	value	target	to targeted
niches	region	proposition	companies	companies

^{*} Not covered in this presentation

1 Select technology niches

2 Benchmark your ecosystem/ region Develop a value proposition

Identify target companies Reach out to targeted companies



Step 1 Select promising technology niches

Classification: categorization of information on technology and know how, according to the characteristics attributed to it, to help its management and recognition

Assessment is the process used to evaluate information about technology and know how, according to established standards

Gateway is any mean to approach, view, communicate with, instruct and retrieve data from information resources

The selection of the technology niche(s) is based on the availability of technologies, products, facilities or a

combination **Technology Products Niche** technology leadership Scientific importance Commercial **Facilities** importance

Source: Buck Consultants International

Examples of technology niches in life sciences

Advanced biomedical materials

Lab-on-a-

Hearing devices

Tissue engineering

Wound care

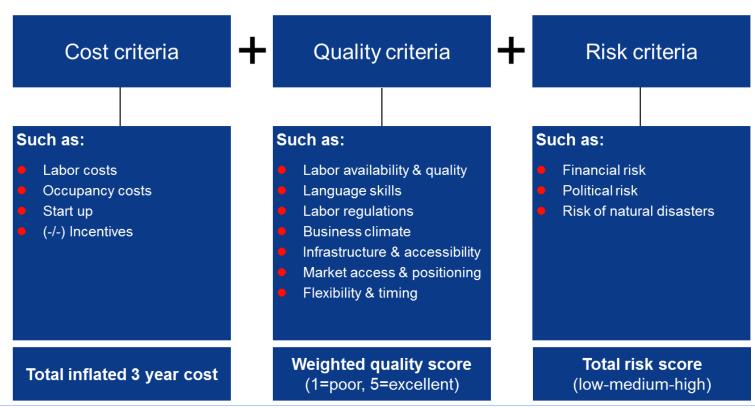
Implantable devices

Molecular imaging

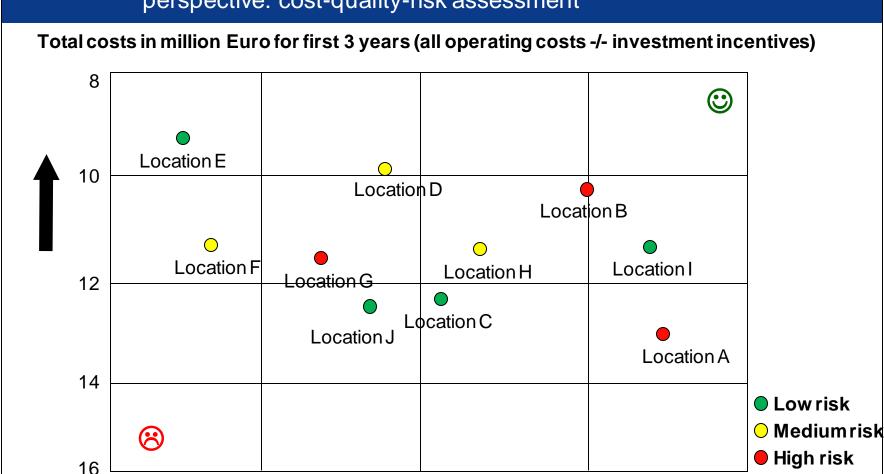
Early drug discovery

Regenerative medicine

1 2
Select Benchmark
technology your ecosystem/
niches region


Develop a value proposition Identify target companies Reach out to targeted companies

Step 2 Benchmark your ecosystem/ region


Location criteria are driven by Cost, Quality and Risk factors

In our site selection approach we use cost, quality and risk criteria to develop a complete assessment of regions & locations

Cost-Quality-Risk matrix of the locations

Example: Project specific site selection results for an R&D center in perspective: cost-quality-risk assessment

© Buck Consultants International, 2018

3.5

4.5

Weighted quality scores

3

1 Select technology niches 2 Benchmark your ecosystem/ region

Develop a value proposition

4
Identify target to companies

Reach out to targeted companies

Step 4 Identify target companies

Based on the Value Proposition a **target database** can be compiled. The database consists of companies with a corporate profile that matches your science park's / region's proposition exactly, due the company's:

These companies should have you on their radar screen!

1 Select technology niches 2 Benchmark your ecosystem/ region

Develop a value proposition Identify target companies Reach out to targeted companies

Step 5 Reach out to targeted companies in order to arrange one-to-one-meeting

- Focus in your marketing strategies not only on large, well-known companies: the growth in new (physical) R&D centers is mainly at midsize and small, fast growing companies
- More than other types of operations (plants, back offices, distribution centers), the key to attracting R&D investments is building personal relationships

Winning R&D projects